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Abstract 
The  goal of this  project was to  develop  a  device  that  uses  electric  fields to grasp 
and  possibly  levitate  LlGA  parts.  This  non-contact  form of grasping  would  solve 
many  of  the  problems  associated  with  grasping  parts  that  are  only  a  few  microns  in 
dimensions.  Scaling  laws  show  that  for  parts  this  size,  electrostatic  and 
electromagnetic  forces  are  dominant  over  gravitational  forces.  This is why  micro- 
parts  often  stick to mechanical  tweezers. If these  forces  can  be  controlled  under 
feedback  control, the parts  could  be  levitated,  possibly  even  rotated  in  air. In this 
project,  we  designed,  fabricated,  and  tested  several  grippers  that  use  electrostatic 
and  electromagnetic  fields  to  grasp  and  release  metal  LlGA  parts.  The  eventual 
use  of  this tool will be to assemble  metal  and  non-metal  LlGA  parts  into  small 
electromechanical  systems. 
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1 .O introduction 

Since 1996, Sandia  National  Laboratories’  Intelligent  Systems and Robotics 
Center has been  investigating  techniques  for  the  assembly of miniaturized 
electromechanical  systems.  Great  strides  have  been  made in developing a semi- 
automated  CAD-driven  workcell  for  assembling LlGA (Lithographie 
Galvanoformung  Abformung)  parts  with 100 micron  outer  dimensions  and 
submicron  tolerances [l-31. In the  course of this  past  work,  one  area  that has 
continued to cause  difficulty is accurate  grasping  and  releasing  of  such  small  parts. 
As the  size of parts  drop  below 1 mm  in  outside  dimensions,  the  parts  tend  to  stick 
to the  gripper  surfaces.  The  attractive  forces  that  cause  this  effect  are  electrostatic, 
magnetic,  surface  tension, and van  der  Waals.  Figure 1 shows  that  these  forces 
are  dominant  over  gravity  as  the  radius of a particle  drops  below 1 mm [4-51. 

- 

- 4  
E l 0  - ............. 

z ..-.-. _._.-.- 

g 1dS - 

H ...... 
....-. ........ .......... 

a, -- /.*- /.- 
.-e 

Electrostatic 
a n  der Waals 

................. Surface Tension 

1 o-’O 

1 o-’ 1 0“ 1 o - ~  1 o-2 
Radius  (meters) 

Figure 1. Forces of attraction. 

All of these  forces can be reduced  with  careful  preparation  and  design of 
materials.  For  instance,  surface  tension  can be reduced  by  performing  the 
assembly in a  low  humidity  clean  room  environment.  Van  der  Waals  forces  can  be 
reduced  by  roughing  the  tweezer  surface [4]. Magnetic  forces  can  be  reduced  by 
using  dissimilar  non-magnetic  materials.  For  example,  in  our  experiments, we used 
Permalloy  (a  magnetic  material)  for  the  gears  being  assembled  and  copper  (a  non- 
magnetic  material)  for  the  tweezers.  And  lastly,  electrostatics  may  be  reduced  by 
grounding  conductive  surfaces;  although,  oxides  quickly  build  up  on  most 
conductive  surfaces,  thus  trapping  electrostatic  charge. 
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Unfortunately,  it is impossible to completely  eliminate  these  forces, and as  parts 
become  smaller,  these  forces  do  affect  the  handling  of  parts.  Therefore,  in  this 
project,  we  investigated  the  use  of  electromagnetic  fields to pick  up  and  hopefully 
levitate  a  part so that it can  be  manipulated  without  actually  touching  the  part. If 
the  part  can  be  levitated  only  a  few  microns  from  a  tweezer  tip,  van  der  Waals 
forces  are  nearly  eliminated  as  shown  in  Figure 2. The  two  curves in this  figure 
represent the upper  and  lower  bounds of the  van  der  Waals  force  of  attraction 
between  a 2 micron  diameter  copper  sphere  and  a  tweezer tip which  varies  in  size 
from  1  micron3  to  an  infinite  plane [3]. This  figure  shows  that  van  der  Waals  forces 
drop  between 4 to 6 orders of magnitude if the  sphere is only 5 microns  away  from 
the tip.  Similarly,  surface  tension  forces  will  be  negligible if the  tweezer tip never 
touches  the  part.  This  has  an  important  economic  benefit in that  a  clean  room  may 
not  be  needed  to  assemble  parts if they can be  levitated  and  never  touched. 

Forces Between Sphere and Block 

I 

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 
Distance between  sphere and block  edge  (microns) 

Figure 2. Van  der Waals  force of  attraction. 

There  are  several  previous  works  that  lead  us to believe  that it is feasible  to 
develop  an  electromagnetic  levitation  probe  for  assembly.  The  first is a  1997  paper 
by  Williams,  et.al.,  at the University of Sheffield  in  the  United  Kingdom [6]. They 
have  demonstrated  the  ability  to  levitate  a 500 micron  diameter,  10  micron  thick 
aluminum  plate  using  high-frequency  (1-10  MHz)  magnetic  fields  generated  by  a 
multi-pole  stator  coil.  Induced  eddy  currents  in the aluminum  plate  (rotor)  cause  the 
plate  to  be  repelled  from  stator coil and  levitate at a  height  of 5 to 35 microns  above 
the substrate.  By  using  three  coils  and  phasing  the  applied  current,  they  have 
demonstrated  that  they  can  even  rotate the aluminum  rotor  at  1000  rpm. 

Another  relevant  work  is  a  paper  by  Rulison,  et.  al.,  at  Loral  Space  Systems  [7]. 
They  have  developed  an  Electrostatic  Containerless  Processing  System 
(ESCAPES)  which  levitates  1  to 3 mm  diameter  specimens  of  metals,  ceramics, 
and  semiconductors  using  electrostatic  fields.  The  system  was  designed  to 
2 April 2002 



investigate  thermophysical  properties of materials.  The  specimens  are  heated  with 
a  deuterium  lamp  to  maintain  their  electrostatic  charge.  An  optical  feedback 
system  using  HeNE  lasers  and  position  sensitive  detectors  (PSD) is used  to  control 
the x,  y, and z position of the  specimens. 

Other  work  by  Allison  and  Kenall  at  the  Pennsylvania  State  University [8] have 
developed  an  electrodynamic  suspension  system  which  stably  levitates  solid  and 
liquid  particles  ranging  from 1 to 100 microns  diameter  without  the  need  for 
feedback  control.  Also  unique  to  their  suspension  system is that  six  transparent 
electrodes  are  arranged  as  faces of a  hollow  cube,  allowing  easy  access  for  an 
optical  measurement.  Four of the  electrodes  are  drive  by  a  variable-frequency  two- 
phase  AC  source  operating  in  the  low  audio  frequency  range. 

There is one  last  levitation  approach  worth  mentioning,  but  not  worth  pursuing. 
The  optical  laser  trap  as  developed  by  Cell  Robotics  has  been  successful  at  moving 
semi-transparent  materials  such  as  blood  cells  in  a  liquid  medium [9]. We  have 
previously  taken  a  LlGA  gear to Cell  Robotics  and  tried to move  it.  There  were  two 
problems.  First,  the  gear  had to be  placed  in  liquid,  and  second,  the  trapping 
phenomenon  did  not  occur  because  the  gear  was  not  semi-transparent. 

To  realize  an  electromagnetic  levitation  scheme  that  could  be  used  to  assemble 
LlGA  and  micro-optoelectronic  components,  the  following  issues  must  be  resolved: 
1. An  analysis  must  be  performed  to  understand  how  electrostatics,  magnetics, 

and  electromagnetics  can  be  combined  to  levitate  both  metallic  and  non-metal 
parts. 

2. Micro-coils  and  electrostatically  charged  structures  need  to  be  designed, 
fabricated,  and  tested to produce  the  desired  electromagnetic  fields. 

3. An  optical,  inductive,  or  capacitance  feedback  sensor  needs to be  designed, 
fabricated,  and  tested  to  control  the  stand-off of the  part. 

This  report  describes  the  work  performed  in  these  areas  over  the  course of this 
project. 
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2.0 Electromagnetic  Analysis  and  Simulation 

During  this  project,  the  Electromagnetic  and  Plasma  Physics  Analysis 
Department has performed  extensive  electromagnetic  analysis  and  simulation to 
determine  the  attractive  and  repulsive  forces  that  can  be  expected  between  the 
gripper and the  part to be  picked  up.  The  initial  analysis  was based on a flat 
circular  metal  part  being  picked  up  by a circular  shaped  gripper  (or  stator)  as  shown 
in Figure 3. The  part  on  the  left  has a radius d, thickness t, and  density pm. The 
stator  on  the  right  consists of a  circle of radius b with a DC  voltage &(V/2)  applied 
to each  quadrant.  The  sign  of  the  applied  voltage  is  alternated  between  adjacent 
quadrants so that  the  part  can  remain  neutrally  charged. 

S tator/Gripper 

Figure 3. Geometry of circular  part and stator  (or  gripper). 

When  the  stator  is  directly  over  the  part  and  the  distance  between  the  two is 
small  compared  to  the  diameter  (i.e.  neglecting  fringe  fields),  they act as  a  parallel 
plate  capacitor  with  capacitance 
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Eon(b2 - a 2 ]  C =  
h 

t 

1 
36n 

where E, is the permittivity of free  space ( E ~  =-x~O-~ F l m ) ,  a is the  inner 

radius  of the stator  pad, b is  the  outer  radius of the  stator  pad,  and h is the  height 
of the  stator  above  the  part.  The  energy  stored  in  the  capacitor is given  by 

2 
E =LC[;) 2 

where (V/2) is the applied  voltage to the stator.  The  electrostatic  force  of  attraction 
between  the  part  and  the  stator  in  the z direction  perpendicular to the  plates is 
given by 

In order to pick  up  the  part,  the  magnitude of the  electrostatic  force  must  be 
larger  than  the  magnitude  of the weight  of  the  part.  The  weight of the  part is given 
by 

F," = pmnd  tG 2 

where pm is the  density  of  the  part, d is the radius  of  the  part, t is the  thickness of 

the  part,  and G is gravitational  acceleration ( G = 9.8 m / s 2  ). Assuming  the  outer 
radius of the  stator is equal  to  the  radius of the  part ( b = d ), the  inner  radius is 
zero ( a = 0), and  using  Equations (3) and (4), the  part is picked  up  if 

'4 Eo - 
8pmtG h2 

For  values of h = l o p ,  t = l o o p ,  and pm = 19281kg/m3 (for  gold), we find  that 
V > 41.3 volts.  This is well  within  the  Pachen  voltage  breakdown  curves  at  standard 
pressure  and  temperature.  The  Pachen  curves  show  the  maximum  arcing  voltage 
for two  planes to be 300 volts  at l o p  , and 900 volts  at loop. The  actual 
geometry  may  give  somewhat  smaller  breakdown  voltages  as  a  result of field 
enhancements  near the device  or  stator  edges. As another  example,  suppose we 
design  for  twice  gravitational  acceleration,  a  maximum  thickness of 1 O O p  and  a 
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maximum  gap of l o o p .  The  applied  voltage  must  be  greater  than  585  volts  in 
order  to  pick  up  the  part.  From  a  voltage  breakdown  point of  view, this is tolerable if 
the  voltage is scaled  back  at  closer  distances.  However,  this is on the edge of the 
current  state  of the art in drive  electronics.  Therefore,  in  our  studies  we  have  only 
considered  parts  that  are 1 O O p  in  thickness  and  less  than 5 0 p  between  the  part 
and  the  gripper. In this  range,  the  applied  voltage (V/2)  is less  than  150  volts. 

If the  stator is above  the  part  and  the  electrostatic  force is counteracting  gravity, 
it  should  be  possible to levitate  the  part  when  the  electrostatic  force is equal  to  the 
gravitational  force.  Unfortunately,  the  attractive  forces  between  the  part  and  the 
surface  it is on  tends to hold  the  part  down,  requiring  us to increase  the  electrostatic 
force  to  break  it  away  from  the  surface.  When  the  electrostatic  force is finally 
increased  to  the  point  where  the  part is broken  away  from  the  surface, the part 
accelerates  towards  the  stator  with  such  force  that  it  jumps  to  the  stator  and  stays 
stuck  to  it.  To  overcome  this  effect, we have  added  a  repulsive  force to counteract 
the attractive  force.  This  repulsive  force  was  created  with  an  electromagnetic  field. 

If an  alternating  current is applied  to  a coil surrounding  the  stator  as  shown  in 
Figure 3, then it is possible to induce  a  circular  Eddy  current  in  the  metal  part  that 
will  cause the part to be  repelled  from  the  stator.  This  electromagnetic  force is 
approximated  by 

where po is the  permeability of free  space ( p o  = 4 n ~ l O - ~ H I r n ) , I  is the  rms 
magnitude of the current  applied  to  the  coil,  and cis the  radius of the  coil.  The 
distance 

2h2 + 2h6 + 3 1 3 ~  I 4  D =  
h+6/2 

is a  modified  Sunde  approximation  where h = h + and t ,  is  the  thickness of the 

coil.  The  skin  depth of the induced  electromagnetic field is 
2 

where u is  the  frequency of the  current  through  the  coil,  and cr is the  conductance 
of the  part.  Figure 4 shows  the  relative  magnitude  of  the  electrostatic  attractive 
force, the electromagnetic  repulsive  force,  and  gravity  as  a  function  of  distance 
between  the  part  and the stator. 

t 
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Figure 5. Side  view  of  stator  picking  up  part  off  a  surface. 
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Next  we  consider  the  dynamics  of  the  problem  and  a  feedback  control  scheme 
for  levitating  the  part.  Assume  the  stator is above  the  part  and  the  part is above  a 
flat  surface  as  shown  in  Figure 5, and  that  surface  tension  can  be  neglected.  The 
equation of motion  along  the zaxis for  the  disk  is  given  by 

1 (')2 x(b2 - a 2 )  ,u,12c 1 
2 2 ( A - t - z ) 2  

mz=-mG+-&, -~ +- --- 
H:[ ( z  :,r z3 

where m = p m x d  2 t , D =  2 ( A - z - t + t w / 2 ) 2 + 2 ( A - z - t + t w / 2 ) 6 + 3 6 2 / 4  , and 
( A - z - t + t W / 2 ) + 6 / 2  

H is Hamaker's  constant  (assumed  to  be ~ O X ~ O - ~ ~ J  for  gold).  The  first  term  on 
the  right  is  gravity, the second  term is the electrostatic  force  acting  upwards,  the 
third  term is the  electromagnetic  force  acting  downward,  and the last  term  is  the 
nonretarded van  der  Waals  force  holding the part  against  the  surface  it is on  (see 
Appendix A for  the  derivation). 

For  the  moment,  assume  that  the  current  running  through  the  coil is zero,  and, 
therefore,  the  electromagnetic  force is zero.  To  levitate  the  part,  one  possible 
control  law  would  be  to  vary  the  applied  voltage  to  the  electrostatic  pad  as  a 
function of  measured  gap  between  the  electrostatic  pad  and  the  part.  This  control 
could  be  written  as 

v = 2hj-j + K ,  (h - h*)+ Kvh 
x&, b - a  

where h = A - t  - z is the  measured  gap  and h* is the  desired  gap.  The  first  term 
is a  feedforward  gravity  compensation  term,  and  the  second  and  third  terms  are 
proportional  and  derivative  control  terms  with  user-defined  gains K ,  and K,, . 

Figures 6 and 7 show  the  response of this  control  without  and  with  the  derivative 
control  term.  Without  the  derivative  term,  there is no  damping,  and  the  part 
oscillates at a  frequency of 5 Hz. With the derivative  term,  a  near  critically  damped 
response  can  be  achieved.  The  difficulty  in  producing  this  more  desireable 
response is that  the  measurement of the gap  must  be  noise  free  since  the 
derivative  of  this  measurement is multiplied  by  a  gain of K,, = 500, 

Figure 8 shows  the  response  of  this  control  when  a  constant  electromagnetic 
field is  added.  The  electromagnetic  field  pushes  the  part  away  from  the  stator, 
causing  it  to  never  reach  the  desired  gap h* = 30 ,urn. 

For  dielectric  parts,  an  electrostatic field may still be  used to lift  the  dielectric 
part  although  it  will  have  substantually  less  force  than  a  metal  part.  And 
unfortunately,  in the dielectric  case  it is impossible  to  repel  the  part  with  an 
electromagnetic  field.  Assuming  the  part  acts  as  a  dielectric  half  space,  the 
equivalent  capacitance  between  a  stator  and  a  dielectric  part  can  be  approximated 
from  a  series  circuit  as 

I 

c 
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where  each  gap  has  capacitance 

- E, (b2 - a2)n  
CP - 2h 

and  the  approximate  capacitance  through  the  dielectric  when h = 0 is 

So = - E 2(b - a)( :] 
IC 

where E is the  permittivity of the  dielectric  part  and g is the  gap  between the 
electrostatic  pads  on  the  stator.  The  associated  electrostatic  force is 

The  ratio  of the force  for  a  dielectric  part to the  force  for  the  conducting  part is 

2 
2CO [ 2c0 + c p / 2 )  

1 

; Eo IC2 @ + a )  1' 
E 16h ln(8tl g )  

If the  relative  permittivity of the part is E / & ,  = 8 ,  a = Omm , b = 2mm, h = l o p ,  and 
F 
ce 

t = g = l O O p ,  then 2 = 0.014. Therefore, the attractive  electrostatic  force  for  a 
I ' Z  

dielectric  part is substantually  less  than  for  a  conductive  part,  which  implies  that in 
order to pick  up the part,  the  gripper  will  have  to  be  much  closer  to  the  dielectric 
part  than the conductive  part.  Surface  conduction  on  the  part  may  eventually  give 
rise  to  larger  forces  at  later  times. 
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Figure 6. Response in the zdirection without  the  derivative  control  term. 
a=Omm,  b = 1 . 5 m m ,  c = d = 2 m m ,  A = 1 5 0 p ,  t=100pm,  t W = 1 0 p ,  

h* = 30 ,m, K, = 1oo00, and K,, = 0. The  initial  condition is z, = 1 p m .  
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Figure 7.  Response  in  the zdirection with  the  derivative  control  term. 
a = O m m ,  b = l S m m ,  c = d = 2 m m ,  A = 1 5 0 p ,  t = 1 0 0 p ,  t w = l O p ,  

h = 30 p, K, = 1oo00, and K,, = 5 0 0 .  The  initial  condition is Z, = 1 p. 
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Several  other  simulations were performed to investigate  the  required  voltages 
and  maximum  distance  required  to  pick  up  a  variety of non-symmetric  parts. In 
these  cases,  simple  formulas  do  not  exist  as  they  do  for  the  parallel  plate  example. 
Instead, the Sandia-developed  boundary  element  electrostatic  code  called 
EIGER-S was used  to  solve  for  the  micro-scale  forces  and  moments  between  two 
bodies (a gripper  and  the  part  to  be  grasped).  This  software  was  originally 
developed  by  Sandia  National  Laboratories  to  evaluate  the  electrostatic  fields  on 
various  weapons  components. In this  project, we have  expanded  it's  capabilities to 
compute  the  electrostatic  forces  and  torques  between  multiple  bodies,  and  to 
perform  these  calculations  on  a  parallel  computer. 

A standard  method of solution [lo], based  on  the  electrostatic  potential, is 
employed  to  obtain the charge  density  on the metal  surfaces.  The  unknown  surface 
charge  density is expanded  in  piecewise  constant  pulses  over  each  panel,  and  then 
the  electrostatic  potential  at the center  of  each  panel is set  to Vi + C where Vi + C 
is the  potential of the fh body.  The  constant  C  in  the  potential is determined  by the 
constraint  that  the  total  charge  in  the  problem is zero. 

The  inputs  to the code  are  the  potential  voltage of each  body  and  a  mesh 
(panels  are  either  triangles  or  squares) of each  body.  To  compute the charge 
distribution,  the  code  uses LU decomposition  to  solve  the  equation 

for q, a  vector  containing  the  charge  density of  each  panel  on  each  body.  The 
vector p is the potential of each  panel  on all bodies,  and the matrix P is a  function 
of the  integral of the  inverse of the  distance  between  each  panel.  The  dimensions 
of matrix P are  quite  large.  For  example,  if  there  are 2 bodies  and  each  body 
contains 1000 panels,  then  the  dimensions of matrix P are 2000x2000. EIGER-S 
uses  closed  form  solutions  to  evaluate  the  matrix P for  triangular  and  square 
panels.  Most  of  the  other  electrostatic  codes  use  numerical  techniques  to  compute 
the  matrix P for  both  triangular  and  square  panels  as  well  as  curved  parametric 
surfaces.  The  advantage of using  a  closed  form  solution is that  it  does  not  become 
numerically  unstable  as  the  panels  come  very  close  together. At present,  the 
closed  form  solutions do  not  allow  us to  solve  for  the  electric  fields of a  curved 
parametric  surface. 

Once the charge  distribution  on  the  body  panels  has  been  calculated,  the 
electrostatic  force  and  moment  between  bodies is calculated  using  Coulomb's  law. 
The  force  on  each  panel j of body i is given  by 

where q~ is the accumulated  charge  on  panel j of  body i , ijj  is the position of the 

center of panel j of body i , E, is the  permittivity of free  space, n is the number of 
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bodies, mb is the  number of panels  in  body b and  the  intergral  is  over  pannel .q of 
body  b.  In  this  expression,  self-forces ( b = i, p # j )  are  ignored  since  the  bodies 
are  assumed  to  be  rigid.  The  total  force  acting  on  body i is  the  sum of the  forces of 
the  individual  panels. 

.4 

The  torque  acting  on  a  body  with  respect to it’s  center of mass  is  the  sum of the 
cross  products of the  vector  distance  from  the  center  of  mass  of  the  body (7&) to 
the  center of each  panel  and  the  individual  forces  acting  on  each  panel. 

Examples of simulations  that  were  performed  are  illustrated  in  Figures 9-13. 
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Figure 9. Simulation  of  electrostatic  force  between  gripper  array  and  cylinder 
shaped  part. 
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Figure 1 1. Simulation of electrostatic  force  between  gripper array  and a  C-shaped  part. 
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Figure 13. Simulation of electrostatic force  between  gripper array and a T-shaped  part. 
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3.0 Experimental Tests 

Along  with  the  analysis  and  simulation  discussed  in  the  previous  section, we 
experimentally  tested  several  gripper  designs.  The  next  two  sections  discuss  the 
test  results of the  electrostatic  and  combined electrostatic/electromagnetic grippers. 

3.1 Electrostatic  Gripper 

Within  the  first  six  months of this  project,  we  demonstrated  that we could  pick  up 
and  release  a 4 mm  diameter  copper  plate  using  electric  fields. A 4mm  diameter,  4- 
electrode  stator  from  the  Micro-Gyro  project  was  mounted  in  our  microassembly 
workcell in an  inverted  position  (see  Figure  14). We designed  and  fabricated  a 
robot  tool  interface  plate  and a custom  printed  circuit  board to hold  the  stator 
package and provide  interface  electronics  to  the  power  amplifiers  and  synchronous 
detection  circuitry.  We  also  designed and fabricated a pedestal  on  which to place 
the  copper  plate.  Software  was  written  to  position  the  stator  at  varying  heights 
above  the  copper  plate  while  varying  the  voltage  to  the  stator. A capacitance 
sensor  on  the  stator  was  used  to  measure  the  distance  between  the  stator and 
plate. 

, rl .I 
-. 

I -. 

Figure  14.  Picking  up  4mm  diameter  copper  plate  using  electrostatics. 
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Tests  showed  good  correlation  between  theoretical  analysis  and  experiments. 
Figure  15  shows  how  the  gap  between  the  plate  and  the  stator  depends  on  the 
voltage  applied to the  stator  and  the  initial  gap  (at  zero  potential).  The  x-axis in the 
figure  is  the  initial  gap,  while  the  y-axis  is  the  capacitance  sensor  reading.  The 
color  of  the  curve is the  voltage  applied to the  stator.  The  capacitance  sensor 
reading  represents  the  change  in  the  gap  when  the  voltage  is  applied.  When  the 
plate  has  been  picked  up,  the  capacitance  sensor  reading  is  1.  Any  value  less  than 
this  means  that  the  plate has been  released.  From  this  figure,  we  see  that  the  plate 
is  picked  up  when  stator  voltage  is  120V  and  the  distance  is 80 microns.  However, 
the  stator  must  be  closer to the  plate if the  stator  voltage  is  96 V. For  the  stator 
configuration  used  in  the  experiments,  the  theoretical  electrostatic  force  is  given  by 

where Vis the  stator  voltage, r is the  radius of the  stator  and h is  the  gap.  When 
the  electrostatic  force  is  greater  than  gravity,  the  copper  plate is drawn  into  the 
stator.  Comparing  Figure  16 to Figure 15, we see  that  the  experimental  results 
closely  match  the  theoretical  expected  values. 
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Figure  15.  Capacitance  sensor  readings  in  experiment.  Capacitance  reading of 1 
indicates  plate  is  picked  up. 
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Figure 16. Theoretical  electrostatic  force of attraction. 

Unfortunately,  when  the  voltage  on  the  electrostatic  pads  was  returned to zero, 
the  copper  plate  did  not  release 92.2% of the  time.  This  sticking  effect is believed 
to  be  caused  by  unmodeled  residual  electrostatic  forces,  van  der  Waals  forces,  and 
surface  tension.  The  part  could  be  jarred  loose  with a slight  vertical  acceleration 
along  the  robot's  z-axis.  To  reduce  this  sticking,  we  designed  the  combined 
electrostatic/  electromagnetic  grippers  discussed in the  next  section. 
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3.2 Combined Electrostatic/Electromagnetic Gripper 

During  the  second  six  months of the  project,  we  designed  three  new  stators  that 
were  fabricated  at  Sandia’s  Compound  Semiconductor  Research  Laboratory.  The 
first  design  is  similar to the  micro-Gyro  stator  except  coils  were  added  (see  Figure 
17)  to  create  an  electromagnetic  repulsive  force.  Combining  this  repulsive  force 
with the  attractive  electrostatic  force,  we  had  hoped to be  able to levitate  the 4 mm 
copper  plate. The second  and  third  design  created  an  array of electrostatic  pads 
and  electromagnetic  coils  (see  Figure  18).  With  this  array, we planned  to  pick  up  a 
nonsymmetric  part  such  as a 480  micron  diameter  pin. 

Figure  17.  Combined  electrostatic/electromagnetic  stator.  The  electrostatic  force 
of attraction  is  created  by  applying  up to 150  volts  to  the  four  inner  pads.  The 
electromagnetic  force of repulsion  is  created  by  applying  up to 1 Amp  of  current to 
the  coils  surrounding  the  inner  pads. The center  circle  is  used to sense  the  stand- 
off distance  between  the  part and the  stator. 
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Figure 18. Two array  designs  for  nonsymmetric  parts. The cross-shaped  pads  in 
the  middle  of  each  coil  are  individually  addressable  electrostatic  pads. The coils 
are individually  addressable  electromagnetic  coils. The diamond-shaped  pads are 
capacitive  sensors. 
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The  purpose of the  first  set of tests  was  to  determine  the  probability of sticking 
for the  structure in Figure  17.  Since  the  electrostatic  pads  on  this  structure  were 
smaller  than  the  electrostatic  gripper  described  in  the  previous  section,  this  new 
probability of sticking  statistic  was  believed to be  different  than  the  previous 
determined  probability of sticking. 

Figure  19  shows  the  measured  probability  that  the  copper  plate  would  not  be 
released  when  the  voltage  was  returned  to  zero. A total of 500 trials  were 
performed  over  several  days.  Each  batch  number  consists of 10  trials.  The  gap 
between  the  electrostatic  pads  and  the  rotor  was  the  maximum  distance  at  which 
the  structure  was  able to pick  up  the  rotor.  This  distance  varied  on  a  daily  basis 
from  approximately 30 to 40 microns.  For  each  trial,  150  Volts  was  applied to the 
pads  for 5 seconds. If the  copper  plate  did  not  immediately fall off,  it  was  counted 
as  being “stuck to  the  gripper.  The  average  probability of sticking  was  calculated 
as 38% from  these 50 data  points  (as  indicated  by  the  pink  line  on  the  graph.)  With 
such a large  deviation  from  batch  to  batch  and  no  time  dependent  trends,  the 
probability of sticking  appears to be  quite  random. 
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Figure  19.  The  measured  probability  that  the  copper  plate  would  stick to the  gripper 
after  the  voltage  is  returned to zero. 

These  tests  were  repeated  with  a  lOMHz, 1A current  applied  to  the 
electromagnetic  coil  after  the  electrostatic  voltage  was  returned  to  zero.  Similar to 
[6], the  alternating  current  should  create  localized  eddy  currents  on  the  part  with  a 
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resultant  magnetic field that  repels the part  away  from  gripper.  Figure  20  shows 
that,  on  a  consistent  basis,  the  copper  plate  either fell off immediately  or  fell off 
when  the  electromagnetic  coils  were  shut-off.  The  electromagnetic  coils  were  only 
allowed to be  on  for  1  second.  Significant  heating  occurred if the coils  were 
allowed to be  on  for  more  than  a  few  seconds.  Figure 20 shows  the  probability of 
sticking  over  15  batches of 10  trials  each.  Due to the consistent  nature  of the data 
during  this  portion of the testing,  it was  believed  that  only  150  trials  were  necessary. 
In Figure  20,  one  can  see  that  the  use  of the electromagnetic  coils  resulted  in  a 
probability of sticking of  either 0 or  10%  for  every  batch.  The  average  probability  of 
sticking was 6.0% with  a  standard  deviation of 5%. 

Electromagnetic Test 

0 1 2 3 4 5 6 7 8 9 1 0 1 1  12 1 3 1 4 1 :  
Batch Number 

Figure 20. Probability  of  sticking  when  a  lOMHz,  1A  current is applied to the 
electromagnetic  coil. 

The  last  experiment  involved  connecting  the  electromagnetic  coils  to  a DC 
voltage  supply  to  simply  heat  the  structure.  This  test  was  to  assure  that  the AC 
current  applied in the  previous  test  wasn’t  just  heating the structure,  removing 
moisture,  and  thus,  reducing  surface  tension  effects.  Since  it  was  not  certain  this 
method  should  work  for  releasing  the  copper  plate, the structure  was  heated  only 
when  the  plate  seemed  to  be  stuck.  Figure  21  shows  that  the  heating of the 
structure  was  not  as  consistent  in  releasing  the  part  as in the  electromagnetic  tests, 
and the  probability of sticking  varied  considerably.  The  average  probability of 
sticking was  15%. 
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Figure 21. Probability of sticking  when  a 1A DC current  is  applied  to  the coil. 
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4.0 Conclusions  and  Future  Directions 

The  experimental  results  show  that  electrostatic  fields  can  be  used  to  reliably 
pick  up  a  LlGA  part  while  electromagnetic  fields  can  be  used to release  this  part. 
The  electromagnetic  coils  significantly  reduce  the  sticking  effect  caused  by  residual 
electrostatic,  van  der  Waal,  and  surface  tension  forces.  The  experimental  results 
show  that  we  can  reliably  pick  up  the  4mm  diameter, 100 micron  thick  part  when 
the  gripper  is  within 80 microns of the  part  and  a 120 volt  potential  is  applied  to  the 
electrostatic  pads.  Unfortunately,  there  was 38 percent  probability  that  the  part  will 
stick  to  the  gripper  when  the  voltage  was  turned  off.  To  eliminate  this  sticking 
problem,  the  electromagnetic  coils  where  added  to  the  gripper  design.  Driving  the 
coils  with a 1 A, 10 MHz  sine  wave  reduces  the  probability of sticking  to 6 percent. 
Other  tests  show  that  simply  heating  the  surface  by  applying  a  DC  current  through 
the  coils  reduces  the  probability of sticking  to 15 percent. 

Experimental  tests  and  the  lateral  stability  analysis  discussed  in  the  Appendix 
suggest  that  it  is  difficult  to  stably  levitate  a  part  with  the  current  planar  gripper 
designs.  Any  small  lateral  disturbance  or  initial  displacement  can  cause  the  part to 
jump  out of the  electrostatic/electromagnetic  fields.  Further  research  is  needed to 
design a true  levitation  device.  However,  the  current  design  is  still  a  possible 
solution  for  reliably  picking  up  and  releasing  metal  LlGA  parts  that  are  less  than 1 
mm3  in  size. 
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Appendix A 

Derivation of van  der  Waals  Force 
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Van  der Waals  (sometimes  called  London's  or  dispersion)  force is caused  by  a 
momentary  dipole  moment  between  atoms  resulting  from  interaction  between 
electrons  in  the  outermost  bands  rotating  around the nucleus.  This  moment  exists 
even  for  atoms  which  do  not  contain  a  permanent  polarization.  While the average 
distribution of electrons is uniformly  distributed  about  the  nucleus, the outermost 
electrons of one  atom  are  inducing  a  dipole  on the other  atoms  which  in  turn  induce 
a  dipole  on  still  more  atoms.  An  easy-to-read  overview of  van  der  Waals  forces is 
given  in [l 13. 

The  end  result is that the non-retarded  interaction  energy  between  two  atoms  or 
molecules is proportional to the inverse of the  sixth  power of distance  between the 
molecules. 

A 
r6 

E. = -- 

where r is the distance  between  the  molecule  centers  and A is a  constant.  This 
constant  depends  on  temperature  and  material  properties  such  as  the  distortion 
polarization,  permanent  dipole  moment,  and  ionization  energy. 

The  derivation of  energy  between  a  disk  and  a  plane  (modeled  as  an  infinite  half 
space)  follows  that  of  Hamaker 12 . The  energy of interaction  between  two 
particles  containing n atoms  per  cm IS given  by 5 .  

n2A 

vl  v2 r6 
where VI and Vz are the volumes of the first  and  second  particles.  The  energy of a 
particle p outside of the  infinite  half  space is determined  by  integrating  van  der 
Waals  energy  inside  the  volume of the  plane  with  respect  to  the  coordinates  of p 
(see  Figure A. l  (a)). 

E = - j  j -dv,dv, (A.2) 

- 2x60 2 n h  
E, = - j  j j 6'r sinOdOdq4dr =- 

D 0 O r  6D3 

D 
r 

where D is the distance  from  the  particle p to the plane,  and cos0, = -. The total 

energy  between  the  disk  and  the  plane is determined  by  integrating E, inside the 
disks's  cylindrical  volume  (see  Figure A. l  (b)). 

D+t 2z R 
E = j j j E,ndxdydz=- -- 

D O 0  y2 [ bz (D t ) 2 ]  

where H = n2n2A is the  Hamaker  constant, t is the thickness  of  the  disk  ,and  R is 
the  radius of the  disk.  The  non-retarded  van  der  Waals  force  along the z  axis is 
given  by 

F =-=-[ aE HR2 1 

' 6 (D+t) 3--$]. 

April 2002 33 



I- 

Figure A. 1. Notation  for  computing  van  der  Waals  energy  between (a) A particle p 
and  an  infinite  half  space,  and (b) A disk  and  an  infinite  half  space. 

t 
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Levitation  and  Stability of a  Conducting  Disc  Above a Coil of 
Electric  Current 

Larry K. Warne 

September 19,2001 

Abstract 
The problem of a  conducting disc above a loop of electric  current is analyzed to examine  levitation 

and  stability  criteria.  Experiments  with  microstructures  demonstrated that oppositely  directed  stability 
coil  and  levitation  coil currents were  required  (which  was  consistent  with experiments  discussed  in the 
literature). This report  constructs  simple models of the structure that explain why such an  arrangement 
leads to stability. 

Acknowledgement 1 I would like to thank  John  Feddema  and Frank Peter for including  me on the 
design team for these structum, for many helpful discussions with regard to their opemtwn, and for 
funding. I would also  like  to thank William Derr for many stqgestions and discussions about operation 
of the device. Finally I would like  thank R o y  Jorgenson and William  Johnson for many discussions on 
modeling of these  devices. 

1 INTRODUCTION 
This report addresw the levitation and  stability issues of a disc conductor  above a current carrying coil 
(consisting of several current loops). Experiments were performed several years  ago  on these  structures  and 
were also conducted elsewhere [l], [2). Although actual discs have  finite conductivity, and  thus nonzero skin 
depths 6 and thicknesses A, we use a perfectly conducting thin disc model in  this report. 

We first look at two models for the lateral restoring forces predicted from the disc edge alone. The first, 
which is the simplest, consists of a perfectly conducting half plane  (the edge of the disc) above a perfectly 
conducting  plane (the stator coils), with magnetic fields induced by  magnetic  line charges representing the 
gaps between the  stator coils as shown in Figure 1. This first model illustrates the criterion for stable 
lateral restoring forces. Because previous experiments used  very thin stator coils, for which uniform current 
densities were present, a second model is considered that is a perfectly conducting half plane above thin 
uniform current  density  levitation and stability coils 8s shown in Figure 2. This second problem allows the 
choice of current  densities on  the  drive coils to be made  directly  corresponding to the experiments. Conformal 
mapping is used to solve both-these two dimensional models. 

Oblate spheroidal coordinates is used to solve the actual  three dimensional geometry of the disc above 
stator coils shown in  Figure 3. Again uniform current density is assumed on  the  stator coils. Perturbation 
theory is used to simplify the  eddy  currents in the circular disc when it is displaced slightly off center from 
the  stator center. The forces are estimated to investigate whether stable restoring forces are then experienced 
by  the disc. 

References for the physical models, conformal mapping, and  oblate spheroidal  coordinates are found in 
[3] and [4], and for the mathematics are found in [5], [SI, and [7]. 
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2 EDGE MODEL - MAGNETIC CHARGE  SOURCE  EXCITA- 
TION 

To obtain a feel for the conditions required for lateral  stability we consider a simpler  problem consisting of 
a single  edge of the disc. This edge is taken as a half plane conductor at -00 < z < d and y = h. Below this 
half plane conductor is a conducting plane. The magnetic field is induced by a two dimensional  magnetic 
line  charge -qm at the origin. Because we desire some of the magnetic flux to emerge  between the disc 
half plane  and  the exciting coil ground plane we also need a magnetic line charge +qm/a at z -, --bo and 
0 < y < h. First we include only the left two line charges in Figure la, then  the  third is also included. 

2.1 Conformal  Transformation 
The conformal transformation to map  the  upper half of a z1 = z1 + jy1 plane of Figure lb  into  the region 
above the ground plane  in  the z = z + j y  plane of Figure l b  is 

dz - Cljdrp 

Noting that z varies between -R+ j 0  and -R+ j h  when cp varies  between 0 and 7r we  find that 

C1 = h/" 

Integrating  the transformation  with respect to 21, and using the condition that z = d + j h  when z1 = -1 to 
evaluate  the integration constant, gives 

h h 
z = - ( z l + l n z l ) + d + -  

7T 7r 

2.2 Magnetic  Field  Solution 
At low  frequencies, the magnetic field intensity JJ obeys the equation 

V x H = J  

where J is the electric current density. In nonmagnetic media, the magnetic flux density  (or  magnetic 
induction) is related to the field intensity through  the constitutive relation 

- B=p& 
where = 47r x H/m  is  the magnetic  permeability of free space. The magnetic  induction  obeys the 
equation 
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where pm is the magnetic  charge  density.  Although true magnetic  charges have not  yet  been observed this is 
a convenient source quantity  that  can be used to mimic certain  current  source field distributions. In regions 
free of electric  current we can  determine the magnetic field intensity  from the scalar  potential q5m by means 
of 

The scalar potential  satisfies 

V24m = - P m / h  

Thus, in charge free regions it  obeys Laplace’s equation.  Using the fact that  the real and imaginary parts of 
an  analytic  function W are harmonic, we can take 

4m = h ( W )  
where W is known as the complex  potential. 

We assume we have a two dimensional  magnetic  line  charge qm at location - p’ 

V24m = -qm6 @ - e’) /h 
In complex notation the two dimensional  position  vector p’ is the location z’, which maps to location zi by 
means of the conformal  transformation. Because we intend to take the line  charge qm ( 8 s  well as the line 
charge -qm/a) on the ground  plane in the z1 plane, the  strengths of these line  charges  double as a result of 
images in the ground  plane  giving  complex  potential 

The source  location z’ = 0 maps to z{ = zi where 

O=xi+Inxi+1+7rd/h 

Let us denote the value of xi when d = 0 by 51, 

O=xb+lnz;,+l 

The value is 

x6 fi: 0.278464543 

Now to  first order in d we have 

The magnetic field can now be determined from 
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2.3 Lateral Force 
The  lateral or X directed force can be easily found  by  means of the Maxwell stress tensor 

E = [p,-,H (H-n) - -,q,H2n d S  = 1 
2 -1 sd, [ ,q ,E(Ed - ;llgH2I1] de 

where S encloses the object on which the force is desired and II. is the  unit outward normal to S. The surface 
S is replaced with a cross sectional  contour C and  the force per  unit length is found in  this  two dimensional 
problem. The contour C is taken as: the  bottom of the half plane -R < x < d - E and y = h - 0; a 
small circle C, of radius E at the edge of the half plane; the  top of the half plane -R < x < d - E and 
y = h + 0. The lateral force F, is determined all from the  tip of the half plane  on  the contour C, where we 
takez=d+jh+Eej'Pandde=E& 

F, [k (H: -Hi)cuscp+H,HYsincp Edcp 

Letting z = d + j h  + E$'+', with -R < cp < R ,  and z1 = -1 + ql, with E ,  lqll << 1, the transformation  can 
be expanded as 

1 

or 

q1 - J 5 q x e j ( ' + ' + A ) / 2  

so that 0 < arg(ql) < T. The derivative of the potential is therefore 

The fields are therefore 

Hz - - 
1+x: 

Qm 1 (- - 1/a) cos (cp/2) - 
~~ 1+2: 

The force per unit length is thus 
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2.3.1 s d  d expansion 

The small  displacement  expansion of the force is 

xhrd/h 
( 1  + 

2.4 Lateral Stability 
The  total force on the two dimensional model for the disc consists of the above force  for the positive x edge 
minus the above  formula  with d 4 -d for the negative x edge  times a length dimension e, 

1 - - { 1 +x i   ( -d )  
- llQ,.] 

1 + 1 
=-$$ [ l + z ; ( d )  - - 21.1 

Using the small d expansion gives 

A restoring force is obtained (that leads to lateral  stability) if et < 0 for d > 0. Thus we must  have 

Q > 1 + x; x 1.278464543 

or 

Q < O  

for stability. 

2.5 Choice of Length Parameter 
The length  parameter e, can be chosen from the global geometry of the disc problem. Suppose the disc 
has  radius a. Then because the lateral  edge force is radially  directed Fp there will be a cos 'p factor  applied 
around  the disc to determine the x directed component.  Furthermore  because the radial force is proportional 
to the small  displacement d ,  and because this displacement is proportional t o  cos 'p around the disc we take 

F P c  x [= Fp cos2 'pad'p x F F  

where 
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2.6 Current Density On Stator  Electrodes 
We  now look at the meaning of the choices of Qm and a in  terms of current  density on the  stator electrodes. 
The current  densities are  taken positive  when in the positive z direction. 

The levitation  electrode is taken to  be -a < x < 0 and y = 0. The  asymptotic form of the magnetic 
field between the half plane  and  the  stator electrode is the same as the current  density 

Thus for 8 positive  levitation  current  density we want qm/a > 0. 
The stability  electrode is taken to be 0 < x < rn and y = 0. However, because the field is decaying in this 

region, the stability  current  density is decaying also. Suppose we take the width of the stability  electrode to 
be b,. Then we could take  the value of the field at x = b,,? as a rough  estimate for the  stability electrode 
current  density 

Ka % -Hz (ba/% 0) 

Because we are only interested in an approximate value we take d = 0 in the transformation 

The  ratio of stability t o  levitation  current  densities is thus 

Thus  the two currents have the same sign for 

< 1 - xh/xla M 0.871 

otherwise  they have opposite  signs. The region of stability a > 1+xb M 1.2785 thus  has  opposite  signs for the 
stability  and  levitation  currents.  The region of stability cy < 0 has the same  sign for the two currents. The 
magnitude of the current  ratio near the  stability threshold CY X 1.2785 is smaller K,/Ke M -0.468/ (1 + X I , )  

than  the magnitude at the other  threshold of stability a % 0 where K,/Ke M 1/  (1 + xis). 

2.7 Current  Density  Near Edge of Half Plane 
The  total  current density  on the half plane is 

K z = H z ( ~ , h - O ) - H ~ ( ~ , h + O )  

Far from the edge of the half plane, this  current has the opposite  direction from that of the current  on the 
levitation  electrode  beneath (the resulting repulsion leads to a vertical  levitation force on the half plane). 
Near the edge x = d - E ,  however this  current  density becomes 
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and for d = 0 

In  the  caw where qm > 0 and Q > 0 we see that  the sign of the current  near the half plane  edge follows the 
opposite  sign of the lateral force. A restoring  (stable) force means that  the current  near the edge is positively 
directed (the  same direction as the levitation  current  density below the half  plane). This  current is oppositely 
directed from the stability  electrode  current in this case. The repulsive force (between  oppositely  directed 
currents)  with  respect to  the stability  electrode is thus  thought to  be responsible for the  stability in this 
region;  without the positively  directed  sign of the current  near the edge we would not expect a restoring 
force. Figure IC illustrates the current sign reversal near the edge of the half plane.  This  sign  reversal (which 
is also a sign  reversal  in the tangential magnetic field on the half plane) is not  surprising from the point of 
view of the magnetic field emanating from the source'below the edge of the half plane. 

If we take qm < 0 and a < 0 the half plane  current is always negatively directed (the  opposite of the 
levitation  electrode  current  and  opposite of the  stability  electrode  current)  and repulsive forces apply to both 
electrodes. 

2.8 Vertical Force 
The energy per  unit  length is 

where  here  points  out of the free space region. We have  taken  the region S to be indented just above the 
magnetic  charge at the origin; thus  the Laplace operator vanishes in S. Note that  the normal  derivative 
vanishes on  the perfectly  conducting surfaces. Thus 

where p is large in the first integral, -x is large in the second  integral, and po + 0 in the final integral. 
Required  asymptotic forms of the transformation and  potential  are (in this subsection the energy is computed 
for d = 0 ) :  

Near the origin 

For --I large 



For p large 

-- N- adm gm (1 - 1/Q) 
aP “hop 

The energy is thus 

The vertical force per  unit length is thus 

2 
= 4, [ { (1 - l / a ) 2  - l} / x  - x/ (cy2h)] 

2 h h  
The  total vertical force is twice this  quantity (for both e d g e s )  times a length  parameter 4, 

where we  have taken -x = be the  total  width of the levitation electrodes and Kt - qm/ ( a h h )  has been 
used. Here we can take  the length parameter to be the mean length of the levitation  electrodes 
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2.9 Second Magnetic Line Charge 
A slightly better representation of a stability  electrode  can be introduced by placing another magnetic  line 
charge -qm (1 - l / a )  at z = b, 

This line  charge thus absorbs all  magnetic flux leaving from between the half plane and conducting  plane at 
a finite  distance from the half plane edge. The position of the line  charge is taken to  map to 2:' = zf where 

z ~ + l n z ~ + l + - ( d - b a ) = O  
T 

h 
We denote by zg the value of z; when d = 0 

1 +xg 
The field components are found from the derivative 

dw 
z1 l / a - ( 1 -  l/a)- - 21 1 -- 

21 - zJ (1 + 21) 

The  lateral force per  unit  length is thus 

2.9.1 s m a l l  d expansion 

now for small d we find 

2.9.2 lateral stability 

The  total lateral force in the small d limit is thus 

Inserting the geometrical  parameters gives 

l/a - (' - (0.13326 - 0.02179 (1 - l/a)}  Td/h 
6.2045 

The previous  result ignored the final term in both  sets of braces. The zero of the first brace now occurs 
a t  a 1.35074 instead of 1.2785. (The final brace can now be negative for 0 > a > -0.19548 creating an 
unstable region.) 
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2.9.3 stability current density 

If we again take  the midpoint  location x = b/2 and y = 0 8s an estimate of the stability  current  density for 
(d = 0) with x; > zls 

The levitation  current density is the same  value as before and  thus 

2.9.4 current density near edge of half plane 

The  current density near the edge of the half plane  in  this case (d  = 0) is 

Thus again for qm > 0 and a > 0 the sign of the  current near the half plane edge is positive when there is a 
restoring force. 

This case with the  additional  line source adds nothing qualitative new to the results even though  it  better 
represents the finite  nature of the  stability electrode. The next section introduces a better representation of 
the current density on the electrodes when the electrode  conductors are electrically thin (uniform current 
density). 

3 EDGE  MODEL- UNIFORM: DENSITY  CURRENT  STRIP  EX- 
CITATION 

The  stator electrodes that were used in the original experiments on the levitated disc were  much thinner  than 
the skin depth at the excitation frequency As << 6 = d m ,  where w is the radian frequency of the 
applied current  and 0 is the electrical conductivity of the metal. Mhermore   t he  width of the  stator elec- 
trodes b were much less than  the electrical impedance  length  parameter b << Z,/ ( w h )  = 1/ (wk~oaA,/2). 
Under these conditions the  current density  in the stator electrodes was  uniform across the width and thick- 
ness. A more accurate model is therefore to treat  the stator electrodes 8s uniform current  density  strips. 
This approach is used in the present section (half plane edge treatment above strips)  and in the  next section 
(three dimensional disc above  circular  strips). 

It is convenient here to consider a half plane along the positive z axis. The mapping usg   the  transfor- 
mation 

21 = fi 
where 0 < arg(z) < 2a and 0 < arg(zl) < 7r as shown in Figures 2a and 2b.  Because  we are considering 
electric  current  excitation  instead of magnetic line charges here it is appropriate to  take  the magnetic scalar 
potential (outside of the electric  current) to  be 
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dm = Im (W)  
Consider fkst an electric line current source I at 

z' = -d - j h  

This maps to 

where the  square  roots of d f j h  in  this expression are taken as the principal branches, but we remember 
that 0 c arg ( z )  c 27r. The logarithms are taken as the principal branch -n C arg (fir jd-) 5 A. 

3.1 Strip  Current  Drive 
Now  we replace current I by K and  integrate  with respect t o  z' or d to construct  strip  current solutions. 
Thus we can write 

W,, = -E ld+b [In (&- j d a )  -In (&+ jd-)] du 
27r 

Using the  identity 

we  find the  strip  current complex potential 



or 

3.2 Levitation and Stability Currents 
Now  we take  the  stability  strip to have uniform current density K, over -b, - d < z < -d and y = -jh 
( b  --+ bs). The levitation strip  has uniform current density KC over -d < z < be - d and y = -jh ( b  -be). 
The geometry is shown in Figure 2c. The  total complex potential for both  stability  and levitation currents 
is thus  (note  that for b = -be < 0 we  must reverse the sign of Kt, because the integration limits should have 
been reversed since the incremental  length  along the  strip should be positive) 

d-) d-) 



-9 27r [ ( z + d - b p - j h ) l n ( f i + j ~ - ) - ( z + d - b t + j h ) l n ( & - j d ~ )  

- ( z + d - j h ) I n  + ( ~ + d + j h ) l n ( f i - j d ~ ) + j ( d ~ + ~ ) f i ]  

Using the f a d  that 

w e  need the quantity  dWt,t/dz 

z+ j J d +  b, - j h  
dWtot d z  - 2 [In (2  - j d d +  b, + j h  
-- ( z + d + b ,  - j h )  -- 1 ( z + d + b ,  - j h )  1 

& + j J d + b , - j h 2 &   & - j J d + b , - j h 2 &  
+ 

-- Ke z + j d d - b e - j h   ( z + d - b e - j j h )  1 ( z + d - b t + j h )  1 
27r [ I n ( 2 - j d d - b e + j h )  + & + j d d - b t - j h 2 &   & - j d d - b t + j h 2 &  

-- - 
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Thus in the limit z 4 0 

The fields are  thus 

The stress  tensor force per  unit  length is 

The contour C is here  taken as: the bottom of the half plane E < x < R and y = -0; a  small circle C, of 
radius E at the edge of the half plane; the  top of the half plane E < x < R and y = +O. The lateral force F, 
is again  determined  all from the  tip of the half plane  on the contour C, where we take z = pej9 4 ~ e j 9  and 
de = E& This yields the lateral force per  unit  length 

Now using the fact that 

12n cos cpdcp = 0 

I’” cos2 (cp/2) dcp = { l+coscp)dcp=lr  

sin2(p/2)dq=- { l - coscp}drp= l r  1 I’” 
r2r 1 r2n 

l o  sin ( (p/2)  cos ((p/2) dcp = f sincpdrp = G 
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c 

+Ke{(Jm+dG)-(J-+JZTJX)}]2 
where the roots are defined  via  their  principal values and  the expression is thus real.  Figure 2d shows the 
total force 

FFt = & [F, ( d )  - F, ( -d) ]  

derived from this formula for a typical set of parameters  where I ,  = b,K,  and l e  = beKe/ne. Notice that 
linearity of the result  only  fails for d = 0 ( h / 2 ) .  The next two subsections  simplify this result. 

3.3 Semi-infinite  Levitation  Electrode 
To simplify the force formula a bit  further we can take  the limit of a wide levitation  electrode be -+ 00, because 
in the experiment the  three levitation  electrodes  together were three  times the width of the single  stability 
electrode.  Noting that  the branches must be  taken as - A  < arg (d - be f j h )  < A or 0 < arg (be - d F j h )  < 
2 ~ w i t h a r g ( d - b e f j h ) = a r g ( b e - d ~ j h ) - w  

d - = - j J - + - j &  

Thus in the be -+ 00 limit we have 

or as the edge of the half plane is approached z --i 0 

- - 2w 1 [ (K,  - K t )  ( d w +  JG) - K,  (d-+ J-)] -$ 
Letting z = p.j' gives 
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and 

Now 

The force per unit length is thus 

3.3.1 small  d expansion 

Now expand for small d 

(K,-Ke)(JW+Jm)-K,(J;-+d-) 
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+(Ka-Ke)-- Ka ( 1 / / - +  l/,/m) f 
Thus  we  have 

- !!?? 47r [{(K. - Kt)&-  Ka (JE+ d m ) } *  

3.3.2 total force and stability 

The total force is thus 

FtOt - - PQezd {(Ka -Kt)  6- Ka ( d m +  d m ) }  
7r 

{ 6 Ka (l/Jm+ 1/,/-) :} (Ka - Kc) - - 
Using the identities 

d m  + d m  = 2 (bz + h2)"4 cos { f arctan ( h / b a ) }  = 

Let us write this 85 

where 



and where K8 = I,/b, and KC = Ie/b.,, the quantities I ,  and It are the coil currents. 
Now taking h M 20 pm, b, M 50 pm, a M 250 pm, d M 1 pm,  and e, x ra/2 gives 

FEt X (1.2787241, + 4 )  (-0.15370321, + I t )  62.83nN/A2 
Suppose, 8s in  the test, we let It x 0.9A and I, M -1.2A 

FY M -43.23nN 

a restoring force. Alternatively if  we assume that l e  x 0.9A and I, M 1.2A 

F Y  M 109.45nN 

an unstable force. 

3.3.3 quadratic  equation for stability  limits 

The force is 

The zeros are 

In the preceding example 

Is/Ie -0.78203,6.50605 

Thus  there is a lateral  restoring force for 

I,/Ie < -0.78203 

I,/Ie > 6.50605 

3.3.4 current  density near edge 

The  current density  on the half plane is 

We use the be + 60 result to determine the current density  near the edge 

K, - [(Ks - Kt) (Jm + J m h )  - K8 (J- + d m ) ]  - 1 
rJiJ 
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The current  density  near the edge  when d -P 0 is 

Kz N ( K g  - K t  - K8 

Noting that c1 > 0, if Kg/Ke < -l/c1,  this  current is positive,  otherwise it is negative. Both regions of 
stability Kg/Ke < -0.78203 and K,/Ke > 6.50605 lead to repulsion between the edge  current  and  the 
stability coil. 

3.4 Vertical Force 
We  now sketch how the vertical force when d -+ 0 can be found. Here we use the form with be retained 

The field is 

Thus 
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The  sum is 

= - s I m [ I n (   ) - l n ( z + 3 h ) j  

x+b, - j h   x -   j h  
27r x+b,+jh 

="[ arctan ( - ) - arctan (h/x) 
A x + b, 1 

and  the difference is 
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Near the edge the y directed field is 

-- [K.{&- ( d w + ~ m ) } - ~ ( ( J i i E -  ( J - + J ~ ) } ]  -sin((p/2) 1 
2 l r 4  

and  the p directed field is 

Hp = -1m (?2) $9- 

Fkom the stress tensor the vertical force per unit length can be written as 

= ih Jm ( H ,  (2, +o) - H, (2, -0)) {H, (2,+0) + H, (2, -0)) & 
0 

where the edge  contribution vanishes. It appears  that  this integral must be evaluated numerically. The  total 
vertical force is thus 
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4 COIL DFLIVE FIELD 
Here it is convenient to  use the magnetic vector potential for the source field. The magnetic  vector  potential 
is found from 

where is the position  vector and  the volume V contains the current  density J .  The vector  potential of a 
symmetric  loop of current  has  only an azimuthal  component cp. The magnetic  vector  potential  produced by 
the exciting  current  loop of radius b, with  azimuthal  current I ,  is 

where K ( k )  = dd/J- and E ( k )  = I:/2 ddd- are  the complete  elliptic  integrals 
and 

2- k =  

J- 
The spherical  coordinate  expansion is 

m 

A i  (T, 0) = p,,I (-l)n+l (2n - l)!! b?+l 

2n+2 (n  + l)! T2n+2 > P&+l (COS’) 
n=O 

where T< = min (T,  b) and T> = max ( T ,  b). The cylindrical form is 

The corresponding fields are 

or 

where 

k’ = dl - k2 

and  the  superscript i denotes the incident  or  exciting field. 

circular strip  stator electrodes  with uniform current  density in cross section. 
The exciting fields from this single coil loop are  later  integrated  with  respect to the radius b to generate 



5 OBLATE SPHEROID PEC DISC  SOLUTION z 

Using the oblate  spheroidal  coordinate  system we can find a scattered  potential from the induced  disc  currents 
which satisfies 

024, = 0 

and  the field is found as 

- H = -V4m 
The coordinate  system is centered now on the disc with the electric  current  loop  excitation  displaced as 
shown in Figure 3a. The boundary  condition  on the disc surface is 

The solution to Laplace’s equation is 

n m  

Finitenes on the = 1 ( z  axis) makes Bmn = 0. Decay at  infinity  requires Cmn = 0. Finally, we can  assume 
that movement of the exciting  current loop relative to the perfectly  conducting  disc is restricted to  the x 
axis, so that  the problem is even  in cp and Fmn = 0. Thus we obtain 

n=O m=O 

where the fact that (E)  = 0 for m > n has  been used. 
The incident field can be transformed to the  oblate spheroidal  system by using the relations 

We take  the incident field to be 

-I 
(1 +a/?) + kn (1 - a/p)  E (k) 1 > I  

p =  J-=Jpz+dZ+2dpco6cp 

+ 

A z = z + h  
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where the original coordinate  system of the current  loop  has  been shifted by d along the z axis  and by h 
along the z axis. 

Using the orthogonality  relations 

in the boundary condition we find 

where 

( l + b / F ) + i ; R - ( l - b / F ) } E ( k ) ]  1 

Because the exciting field is even in ( at C = 0, only the terms m + n odd contribute.  This makes the 
scattered  potential  odd in (. The evenness of the exciting field in cp allows us t o  write 

Thus  the  boundary value problem has been solved  in terms of these  quadratures for the coefficients. 

5.1 Zero Displacement  Symmetric Result 
The limit of zero displacement d = 0 results in the symmetric exciting field 
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All modal coeffcients with rn # 0 vanish.  Thus 

5.1.1 symmetric and far apart 

The far limit h >> a we use 

Q1 ( j c )  = ('arccot (' - 1 

Now for (' = 0 

or 

The case of zero displacement does not lead to net lateral forces.  Thus  we  later  consider  small  displacements. 
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5.2 Forces 
The forces acting  on  the disc can be found from evaluating the integral 

E=JVLx&dV 

where we can take  the volume V to be the disc and  the magnetic field B to be that resulting from the source 
current loop only. This ignores the self interaction of the disc currents, which is not  important for rigid 
bodies. We can rewrite this as 

where H i  is odd in < and even in cp, Hi is odd in and even  in cp, and Hh is even  in but odd in cp at C = 0. 
Also % is even in and even in cp, and % is odd in < and odd in cp at = 0. In addition q is odd in E,  
qisoddinC,and%isevenin<atC=O. Thuswecanwrite 

Now the unit vectors can be replaced first with cylindrical then with Cartesian quantities (see the appendix) 

t 
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Because H: is even  in cp, H j  is even and cp, Hp is even in cp, H i  is odd in cp, and H, is odd in cp, we  find 

E = 4 h [ p d p b  @ [ ( H ~ e z ~ c p - H ~ z ) H p + ( - H ~ ~ s i n c p - H ~ ~ ) H , ]  
?r 

or 
F z = 4 / 1 0 L  a pdp~?rdcp(H:Hp~os~-H~H9sincp) 

1 
= -4/10a2 1 dcp (HiHt + HbH,) 

where the fields Hp and H9 are the disc current  induced fields evaluated on top of the disc. They me found 
from the potential 

or 

where identities for the derivative  are 

and 
m n  
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> 
5.3 Torques 
Now  we consider the torques on the disc. Because of symmetry the torque of interest is 7,. This  can  be 
found as 

.!- 

or 

or 

- ( Kp cos cp - K, sin cp) ( Bp sin cp + B, cos cp)] pdpdcp 

= 2 ~ l a p - ~ ( B p K , - B , K p ) p d p q  

where we have used the f a c t  that Bp and K, are even in cp and  the fact  that B, and Kp are odd in cp. Using 
the symmetry from top to bottom of the disc we can write  (where the integration is now only on the  top of 
the disc) 

rY = 4 h  6' la (HjHp + H',H,) p2dpcos cpdcp 

Now transforming to spheroidal  coordinates gives 

I 
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5.4 Expansion of Incident Field 
The case where  d is small but nonzero is now discussed. First the exciting  or  incident  field must be expanded 
for small d. We write the incident  field as 

Now  we write 

K' ( k )  = - ( E  - k n K )  
1 

kkn 

1 E ' ( k )  = -(E- K )  k 

- = --k [-b/p2 + -b/j i2 1 + -- 2k 6'k ( 1  - b/p)]  E ( k )  aH: -I 
aii 8 x 6  k a  kt4 ai; 

+-I an& [ - 2 K ( k ) + { ( l + b / ~ ) + ~ ( l - b / ~ )  1 

+-' k [ - 2 K ' ( k )  + { ( l + b / p ) + ?  
1 

8 x 6  

- --k -I [ -b /p2  + s b / p  + 7 { 1 - (2) k 2 }  (1 - b /p ) ]  E 1 4 k2 - 
8 4  pkt4 

4 1  

t 
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5.5 Lateral  Force  for Small Displacement  Approximation 
The lateral force in the case where d is small is now treated.  Taking the limit of the previous  expression 

F,=4hLap ipLxdcp(H:HPwscp-H:H, , , s inq )  

where 

or 

00 m 

i 

00 
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Thus we  find 

where the "hat" coefficients are the values given by the code (normalized values). The ratio of Legendre 
functions  can be found  from 

5.6 Vertical Force for Small  Displacement  Approximation 
Now consider the vertical  force. The result is 

F, = - 4 h  J a  p d p L T  d q  ( H ~ H ~  + H;H,) 
0 

1 7r 

= - 4 h a 2  1 t41 d q  (HiHt + HiH,) 

where 
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Thus 

where  again the "hat" coefficients are normalized. 

5.7 Torque  for Small Displacement  Approximation 
Taking the limit of small  d in the previous expression gives 

Ty = 4p.,,a2l 1' ( H ; H ~  + H;H,) J G < d ~ c o s c p +  

where 

5.8 Strip  Coil  Excitation and Results 
The above  equations for small  displacement  d have been implemented in computer  program. The exciting 
fields (and  their  derivatives with respect to d) have been  integrated  with  respect to  the loop  diameter b to 
generate uniform current  density  circular  strips.  The  levitation  strip  extends from a radius bemi,, to  a radius 
bemax and  has  azimuthal  current  density Ke = (bemax - bemi,,), where l e  is the levitation  current  per 
turn  and  this coil is considered to  consist of ne turns.  The  stability  strip extends from a  radius b,,i,, to 
a  radius b,,, and has  azimuthal  current  density K, = Is/ (b,  - bsmin) , where I, is the stability coil 
current. 

The disc of radius  a is a distance h above the coils and is displaced  a  small  distance  d  from.the coil center 
along the 2 axis. The  parameters  taken in this example are  a x 250 pm, bemi,, x 100 pm, BemM x 250 pm, 
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ne = 3, bamin fi! 250 pm, b8 300 pm, h M 20 pm.  These choices correspond to a set of experimental -i 

apparatus  that was  constructed  several  years ago. Figure 3b shows a micrograph of the  stator coils in 
this device. The  outer coil was the  stability coil. The next three coils inward were driven  in  series as the 
levitation coil (the  inner circular strip was  not used). The disc radius was the saw as the small gap between 
the levitation and  stability coils. A stable selection of currents used in the experiment were I ,  M -1.2 A 
rms and It w 0.9 A rms at f = 10 MHz. 

The lateral  force p u l t s  from the disc can be written in terms of the two currents as (here we have 
arbitrarily set d = 1 pm) 

a 

C = 1.823216 X N/A2 

If I ,  = -1.2 A, It = 0 we find that 

F, x -3.9276033 x lo-' N 

A = -2.72750 X IO-' N/A2 

If I, = -1.2 A, IC = 0.9 A we find 

F, -7.0259085 X N 

B = 7.509217 X N/A2 

We then have the  quadratic equation  for  zero  force  with 1: = I , /&  

O = & + B x + C  

The solutions are 

-B f 
x = I,/Ie = 2A M 27.77216, -0.240693 

The fact that  there is both a positive and negative  solution is similar to  the half plane model above  (although 
the values are a little different).  Figure 3c shows a plot of the disc lateral force (dotted curve). The half 
plane  result that was  illustrated in Figure 2d is also shown (solid curve). The simplified half plane  result 
(small d and  large be) is also shown (dash-dot  curve).  Restoring force is indicated by negative values. Notice 
that  the half plane  analysis is fairly accurate in the region of reasonably sized currents. 

Figure 3d shows the vertical disc force as a function of stability  current for this example. Figure 3e shows 
the  total azimuthal  current  density  on the disc as a function of radius for various stability  current levels. 
Notice that for I., < -0.2 the current  density at the edge p = a is positive (the  same sign as the levitation 
current below the disc). The change in sign  of the edge  current  occurs at I., M -0.19 A. The change in sign 
of lateral force on the disc  occurs  in  Figure 3c at Id = -0.21 A. These values are very nearly the same as in 
the half plane  analysis. 



5.9 Forces for Simplified Loop Geometries 
This  section simplifies the oblate  spheroidal  solution  further by considering the case where a single loop 
stator coil and  the disc are far apart in z. This gives a dipole field excitation of the disc that is unstable. 
Finally the c8se where the  the single  loop itator is much larger in diameter  than  the disc is considered that 
is stable.  Both  treatments  assume that d is small. 

5.9.1 small  displacement large distance apart 

To simplify the problem further  and develop  some insight with  regard to the stability issue, we  will take  the 
coil and disc to be far apart,  such  that  the modal Series in n can be approximated as well as approximating 
the incident field. It is convenient t o  start from the spherical loop expansion in this limit to approximate 
the incident field  for b << h. 

where 

or 

where the dipole moment is 

- m = IIrb2gz 
We can also find the field of the dipole via the scalar potential 

or 
c 



If x2+y2 = p2 = 0 then Hid = m/ (27rz3). The exact field  on the axis of a loop is H j  = ( Ib2/2)  / (b2 + z2) 3/2. 

L e t u s t a k e z = h a n d z + z + d  

m [ul‘- ( x + d ) 2  -y2] 
Hjd = 

47r [(x + d)2 + y2 + ha] 
5 / 2  

Now let us take d small, x = pcoscp, and y = psincp 

Thus  setting p = a J g  gives 

m {2h2 - a2 (1 - c2)} 
47r { h2 + a2 (1 - t2) }5’2 

(C) = 

H$ (t) = - ma- (,,, 2h2 - a2 (1 - c2) 
4n { h2 + a2 (1 - t2) }5’2 h2 +a2  (1 -t2) 

The approximation of the series in n also requires h >> a so that  the dipole  incident field remains smooth 
over the disc radius. Thus we might  further simplify to 

H:; - - m 
2xh3 

The dipole field force is 

t 
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The Legendre functions are 

Using these we find 
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4ma 
a2h5 
- - (2c2 - 1) 1 

€ 

4' (€) - 4ma 

Inserting  these and  the approximated  dipole fields into  the force gives 

H:: N - m 
2rh3 

H:: (€1 - -- 3ma JG nh5 

4m2a3 - hd-  a2h8 
This case appears to  be unstable  since the coil is centered at z = -d and  the force is in the positive x 
direction. We really  need to  also look at the torque rY to see if the movement is accompanied by any tilt 
that might in turn change the force. But first we calculate the vertical force. 



Setting z = h and p = a d 1  - c2 gives 

3 m h a d q  

47r {a2  ( 1  - t2) + h2I5I2 

Expanding for  large h 

Inserting into the force  formula gives 

5.9.2 s m a l l  displacement large exciting loop 

Next we take the limit that b >> h. The magnetic  field from the loop in this limit is 

A$ = h.lol- - &I- (4z2 - p2) 
P 3P 
4b 32b3 

The field for large b is 

Now we displace p to (in the unit vector as well). 
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The final term resulting from HzHco is larger in magnitude than  the first terms  resulting from H:: (Hc1+ H,+,l). 
Thus  the final term is the  term responsible for flipping the sign of the force to a negative  quantity. The  total 
result is 

a3 [ 2a2a W] 
b4 

l+--pf)012-d 1+--- 

If the first term is dominant,  then  the force is negative and stability is indicated.  Perhaps it is aH;/ap > 0 
that is required as in the caSe of the loop. 

Now the axial force is 

If the first term is dominant,  then the force is positive and levitation is possible. 

5.10 Torques for Simplified  Loop  Geometries 
This section looks at the corresponding  torque for the two simplified geometries of large z spacing and large 
loop  diameter. Again both  treatments assume that d is small. 

5.10.1 small displacement  large  distance apart 

Now  we take in addition that h is l a r g e  

where 

The dipole  potential is 

T a k i n g z + z + d  

mz mz 
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Setting z = h and p = a d -  gives 

H+-  3 7 n h a J i 7  

47r { a2 (1 - c2) + h2}5/2 
Expanding for large h 

Inserting into the force  formula gives 

5.9.2 s d  displacement  large  exciting  loop 

Next we take the limit that b >> h. The magnetic field  from the loop in this limit is 

T 3T3 
4b 32b3 

- p ~ -  sine - C~OI- sin8 (5cos2 8 - I) 
or 

A$ = h I -  - k I -  (4z2 - P') 
P 3P 
4b 32b3 

The field  for large b is 

Now  we displace p to 2 (in the unit vector as well). 
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or 

Thus setting z = h gives 

Hjb - I- 1 [l- - 3 (2h2 -$)I N (2h2 - p2 - 2dpc~scp)I 
2b 4b2 

- Hit  + Hiidcuscp 

H$ - [l- - (2h2 - p 2 ) ]  = - [l- - {2h2 - a2 (1 - c2)}] 3 I 3 
4b2 2b 4b2 

.. 

3hji 3h 
H ' b ~ I - ~ I - ( p + d c a c p ) - H ~ + H ~ d c ~ c p  4b3 4b3 
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i 
Because of the smoothness of the exciting field at the disc we can approximate the field with only a few 
terms. The force is again 

where 
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The final term resulting from H z  He0 is larger in magnitude than  the first terms  resulting from Hit  (Hc1+  Hpl).  
Thus  the final term is the  term responsible for flipping the sign of the force to  a negative quantity. The  total 
result is 

Y 

c 

e - - h 1 2 - d  a3 [ 1+--- z2 z2] 
b4 

If the first term is dominant, then  the force is negative and stability is indicated. Perhaps it is aHj /ap  > 0 
that is required as in the c s e  of the loop. 

Now the axial force is 

If the first term is dominant,  then the force is positive and levitation is possible. 

5.10 Torques for Simplified Loop Geometries 
This section looks at  the corresponding torque for the two simplified geometries of large z spacing and large 
loop diameter. Again both  treatments assume that d is small. 

5.10.1 small displacement  large  distance apart 

Now  we take in addition that h is l a r g e  

where 

The dipole potential is 

T a k i n g z + x + d  
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Now setting z = h 

Thus 

Transforming t o  spheroidal coordinates 

Thus for large h 

H+- 3mhaJ-2 1 

47r{h2+a2(l-<2)}5/2 

Inserting  into the torque formula yields 

Thus the contribution from HcoH;, is dominant for large h. 

5.10.2 small  displacement  large  exciting  loop 

Now we take in addition that b is large 

The field  coefficients are 

3ha2 a2 .", - h 1 2 - g - d L  [-F (1  - 2t2)  - { 1 - - 2b2 (h2 - a2/5) 
3 



-p,,12-d ha2 [-s7 3 a2 - { 1 - 2b2 3 (h2 -u2/,5)}] = 
b4 

Now for large b the H.coH$ contribution is dominant and  the torque is negative. 

6 CONCLUSIONS 
This report discusses the levitation forces and lateral  restoring forces  for a perfectly conducting disc above 
stator electrodes. Oblate spheroidal coordinates are used t o  solve  for the disc currents excited by  uniformly 
distributed  stator  strip electrodes. Results are simplified  by considering small lateral displacements of the disc 
about  the electrodes. This allows only the symmetric and first asymmetric modes to  be included in the series. 
Note in this limit that  the contributions from both sets of cross terms (one set is the symmetric excitation 
field interacting with the asymmetric current and  the other set is the asymmetric source field interacting  with 
the symmetric current) in the  quadratic force expression are of the same order and must be included. The 
forces are determined by the Coulomb force method. Calculations based  on the formulas clearly demonstrate 
stability characteristics observed  in previous experiments. For example, levitation forces  overcome the disc 
weight. In addition, reversal of stability coil currents relative to the levitation coil currents results in lateral 
restoring forces and  stable levitation at low currents  (this non-intuitive approach was eventually used in the 
prior experiments). The calculation also shows that .with extremely large stability  currents (much larger 
than could be achieved  in the experiments) of the same sign as the levitation coil currents,  lateral restoring 
forces can also be attained  (this was intuitively thought to be the simplest approach to stable levitation 
at the outset of the experiments). Calculations also show that by increesing the size of the stability coil 
(leaving a dead space between the disc and stability coil) stability coil currents,  with the same sign as the 
levitation coil currents,  can be reduced in magnitude but are still required to be larger than  the reversed 
sign case. Thus  the disc model reproduces the experimental results as well as indicates improvements that 
can be attempted. 

To understand the results, in particular the lateral restoring forces,  simplified  models  were introduced. 
The edge of the disc was modeled as a half plane conductor above electrodes. The first model took the 
half plane above a ground plane stator, in which the  stator magnetic field was excited by magnetic line 
charges. This model furnished simple results for both  lateral  and vertical forces. In  particular, it led to an 
understanding that when the stability  current is reversed from the levitation current, the induced current on 
the half plane near the edge reverses sign (becomes the same sign as the levitation current  beneath the half 
plane) and  thus is repelled by the stability coil. This  appears to be the source of stability observed  in these 
cases. This sign reversal near the edge of the disc is also observed in the  oblate spheroidal solution as the 
stability  point is approached. The two dimensional model also showed that stability can be achieved with 
the same  current direction on the stability coil (as the levitation coil) but with larger current magnitudes. 

Finally, the half plane conductor (representing the disc edge)  was placed above uniform current density 
strips for both the levitation and stability electrodes. This’ led to similar results as the previous  simplified 
model except that  the predicted forces are directly  tied to the  strip or  coil current densities. Comparisons 
between the predicted lateral forces  in this model and in the disc model are relatively good if the stability 
coil current is not too large. 

’> 

6 

f 

0 
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c 7 APPENDIX - UNIT VECTORS IN SPHEROIDAL SYSTEM 

b 
This  short  appendix derives some relations between the unit vectors in the oblate spheroidal system and  the 
Cartesian and cylindrical systems. The position vector is 

- T = X& +yey +Z& 

The relation between Cartesian and cylindrical coordinates and oblate spheroidal coordinates is 

x = a J l G J 1 - S 2 c o s ' p  

The metric coefficients are 

Thus  the unit vectors are 

or 

or 
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The limit c = 0 gives 
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Figure la. Half  plane  edge  model  for  disc.  Stator  field  excitation  provided by magnetic  line 
charges. 
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Figure  1.b. Conformal  mapping  for  solution  of  problem  in la. 
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Figure IC. Illustration  of  current  density  reversal  at  edge  of  half  plane.  This  provides 
repulsive  restoring  force  with  respect to stability  electrode  current. 
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Figure 2a.  Half  plane  excited  by  electric  line  current. 
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Figure  2b.  Conformal  mapping  for  solution  of  problem in 2a. 
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Figure  2c.  Half  plane  edge  model  for  disc.  Stator field excitation  provided by  uniform 
current  density  electric  current  strip  electrodes. 

'B-48 



0 

-400 

-600 

\ 

\ b[=l50 pm 
b,=50 pm 
h=20 prn 
nI=3 
lc=0.9 A \ I,= -1.2 A 

Figure  2d. Total  lateral  force  from  half  plane  edge  model with  current  strip  excitation. 
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Figure  3a.  Disc  geometry  above  circular  strip  electrodes  for  stator  coils. 
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Coil 2 - Concentric Coils 

Figure 3b. Stator  coils  used in previous  experiments. 
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Figure  3c.  Lateral  force  on  disc  and  from  half  plane  edge  model  (with  current  strip 
excitation) as a function  of  stability  coil  current. 
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Figure 3d. Vertical  force  on disc as a function  of  stability  coil  current. 
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Figure 3e. Total  azimuthal  current  density  on  disc as a function  of  radius  when  disc  is 
centered above stator  electrodes. 
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